
Fast Time Plot Data Acquisition
Faster than 15 Hz

Fri, Jan 14, 1994

The analog IndustryPack module used in the Internet Rack Monitor (IRM)
includes support for recording 1 KHz samples of 64 A/D channels in a 64K
byte circular buffer. The buffer wraps in 512 ms. It is desired to access
such data for the purpose of making plots. In the Acnet control system, the
Fast Time Plot protocol (FTPMAN) is used to acquire this data from the front
ends. A console requests data to be delivered at 15 Hz down to 2 Hz. In
principle, the console could collect 1 KHz data, but it limits its Continuous
mode plotting support to 720 Hz data. In the “Auto” mode, the limit is 200
Hz. Faster rates must be accessed via the Snapshot mode.

The SSDN that is sent in FTP’s Timing Info Request message is the same
SSDN that is used when the named device is called up for display on a
Parameter Page. In order to access the data from the analog IP board,
FTPMAN must somehow derive the class code that describes what plotting
support is allowed for the given signal. To deliver the plotting data, both
the 64K memory that holds the 1 KHz data as well as the register block for
the IP board must also be determined. But the SSDN now contains only the
analog channel number that points to the data pool.

One possibility would be to utilize a spare byte that has so far not been
used in the SSDN data structure. This would require changing the off-line
uploading program that updates the Acnet database with changes made in
a local station. How can the uploading program determine in what set of 64
channels a given channel resides, if indeed it resides in any set of 64
channels from an analog IP board. One could use a spare byte in the analog
descriptor for this purpose. And one could assume that the low 6 bits of
the channel number indicate which channel out of a 64-channel set is
being referenced. It would seem wasteful to use the spare byte for this
purpose, however, as each channel in a 64-channel range would have to be
marked in the same way. Perhaps a small table of channel # ranges could
relate to the memory and register block locations.

A simpler approach might be to fix the ranges of channels used for
available IP boards. An IRM can have one or two such boards. But a VME-
based station that uses IP carrier boards might have more.

Another concern is to provide support for up to 1 KHz data via a new
listype. In this case, an ident format must be defined. It could include the
type of 64-channel block. But how can the user enter this information, say,
on the Macintosh Parameter Page? The support code for this listype could
return data in a format similar to that used for data stream returned data.

Fast Time Plot Data Acquisition p. 2
returned for each ident. The internal pointer could include the 16-bit
offset of the next datum to be collected, so that each update would begin
where the last one ended in access to the circular memory buffer.

A simple approach can be as follows: Assume that channel#s 0100–013F are
supported by the IP module in slot d, in which the base address of the
memory is 00630000 and the register block is at FFF58300. For channel#s in
the range 0140–017F, assume the IP module is in slot c, the memory base
address is 00620000 and the register block location is FFF58200. For VME-
based stations that do not use IP modules, these channels could not be
assigned; at least no one could try to FTP them. This scheme could work for
IRMs that have 64 or 128 channels.

In order to collect data that is measured at times relative to clock events, a
different plan should be adopted. If the reply data includes a 32-bit time
associated with the first point, and a second 32-bit number that is the time
between the two most recent events used for this request, then including a
timestamp with each data point that is the time measured from the most
recent one of those events would allow for 16-bit timestamps. The host
program would need to add each time offset to the time of the first point
to get the plotting time value. If this sum is greater than the given event
time difference, then subtract this event time difference from the sum to
get the time value suitable for plotting the data point. Note that by
definition the first time offset would be zero.

Assume that we get an interrupt whenever a clock event is written into a
FIFO. In response to the interrupt, sample the 1 MHz free-running timer on
the MCchip on the 162 board and save it in an array of 256 entries, one for
each clock event. Besides the sampled time of each event, also measure the
time between such events. This time between the two most recent events
would be used in replies for the plot data described above.

